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CALCUILBTION OF CAMBER USING S L E m E R  W N G  THEORY 

AT Il\llhhCH NUMBER 1.0" 

By William B. Igoe 
Langley Research Center 

STJ R-Y 

A ca lcu la~on  procedure based on slender wing theory a t  Mach number. 1.0 is pre- 
sented for the determination of the mean line camber ordinates for laterally symmetrical 
wings with polygonal plmforms. A uniform chordwise load and a continuous but otherwise 
arbitrary spanwise load distribution is assumed. The procedure is generally limited lo 
slender wings at high subsonic speeds and low lift coefficients. 

Graphs of functions required in the calculation procedure a r e  presented, In addition, 

an application of the me&od of calculation for a variable-sweep wing planafolrm is described 

and some calculated camber results a r e  shown. Although the slender wing theory for 
m c h  number 1.0 is considered to be inadequate for the calculation of the detailed slbape of 

airfoil section camber for supercritical wings designed for near-sonic speeds, a compari- 
son with experimenbl results shows that it predicts the general ma@iteede and trend of the 
spmwise m r i a ~ o n  of the wing twist angle. 

INTRODUCTION 

Slender wing theory was introduced in 1946 by Robert T. Jones in reference 1, and 
in 1948, the application to sonic flow was stated explicitly by Heaslet, Lomax, and Spreiter 
in reference 2. At about the same time, s imilar  results were obbined in England Iby 

A. Robinson and in inranee by R. Legendre, E. A. Eichelbrenner, and A. von Baranoff, 
Debiled references to these developments a r e  conbined in volumes 6 m d  7 of the 

Princeton Series on Nigh Speed Aerodynamics and Je t  Propulsi'on. (See refs ,  3 and 4,) 

As shown in reference 2, the linearized potential flow theory equation relating the 
downwash of a slender lifting wing to i t s  load has an especially simple form at Maeh 1, 
This equation for  the downwash a t  a field point on a wing a t  Maeh 1 has the same form as 
the incompressible flow equation for the downwash in the far wake (neglecting rollup of the 

*The information presented herein is based on a thesis submitted in partial fulfi l l-  
ment of the requirements for the degree of Master of Science in Aeronautical Ensneering, 
George Washington University, Washington, D.C., February 197'1. 



trailing-vortex sheet) downstream of the field point for that part  of the wing ahead of the 
field point, The relationship between the sonic and incompressible flow fields is easily 
~sualized when the Prandtl-Glauert compressibility factor for Mach 1 is considered a s  
stretching the wing dimensions infinitely in the streamwise direction. The pressure sig- 
nals in the zone of silence behind a sonic Mach line through the field point cannot propa- 
gate upstream in sonic flow. Therefore, only that part  of the wing forward of the field 
point eontrih~ltes to the downwash a t  the field point. 

'The simple form of the downwash equation for a slender lifting wing in sonic flow and 
its resemblianiee to the far-wake downwash equation of incompressible flow allows a simple 
solution to be used. This solution is similar to the lifting-line theory solution of Glauert 
in reference 5 for incompressible flow. By following Glauert's method, the sonic wing 
domwash velocity7 and thereby the local streamwise slope of the wing-section cambered 
mem lines, may be expressed in terms of the coefficients of a Fourier sine series. This 
series represents the partial spanwise load distribution of that part  of the wing ahead of 
the fiend point. The local cambered mean line slopes may then be integrated streamwise 
to obtain cambered mean line ordinates. 

For the special case of a polygonal wing planform with lateral syrnmetry and with 
miform chordwise load, the Fourier coefficients for computing cambered mean line slopes 
and similar coefficients for computing cambered mean line ordinates have been derived 
for continuous but othenvise arbi trary spanwise load distributions. The sum of the 
resulting series expression for cambered mean line ordinates has been taken to obtain 
a elos ed- form solution. This closed- form solution avoids the necessity of evaluating 
a term- by-term s u m m a ~ o n  of a slowly convergent ser ies  which requires a large num- 
ber sf terms for numerical accuracy. The resulting solution is applicable to a variety 
of wing planforms, including those typical of variable-sweep wings. It can be extended 
to other planforms by means of superposition. Ths usefulness of the slender wing 
theory at Mach 1 is mainly for  wings a t  high subsonic speeds. As indicated in refer- 
ence 2, this simplified form of the linear theory should be applicable for wings for which 
the slenderness parameter PA is small. 

Graphs of the functions encountered in the closed-form solution a r e  presented and 
m application of the method of calculation for a variable-sweep wing planform is 
described, Some calculated camber results a r e  included and the theoretical wing twist 
distribution for a supercritical wing designed for near-sonic speeds is compared with an 
ewerimentally obtained twist distribution. 



A aspect ratio 

Am coefficient in trigonometric sine series representing the wing-section 
design lift coefficient distribution (see eq. (A4)) 

IBn coefficient in Fourier sine series representing the partial wing spanwise 
load distribution (see eq. (4)) 

b wing span 

C L wing lift coefficient 

Cn coefficient in ser ies  solution for wing mean line camber ordinates 

(see eq. (8)) 

% pressure coefficient 

= @)lower surface -  upper surface 

c in general, except for ct with o < 

@av average chord, S/b 

61 section lift coefficient 

Dm function in analytical summation of series (see eq. (Cl)) 

dl perpendicular distance from wing pivot point to wing leading edg~? 

d2 perlpendicular distance from wing pivot point to wing trailing edge 

d3 perlpendicular distance from wing pivot point to wing-tip chord 

Em function in analytical summation of series (see eq. (C4)) 

F,G,B,I functions of n, m, and 8 (see eqs. (All),  (A12), (B6), and (B?')) 



Km ftinction in recursion formula soluGon for  Am coefficients for elliptical 
spanwise load distribution on straight-tapered wings (see eq, (E5)) 

k = tan A Q ~ j . t h  exception of k~ = -tan u) 

kt = 12.r A' (with exception of k6 = -tan ow) 

L m,s functions in summation for wing mean line camber ordinate (see eq, (14)) 

E length of variable-sweep wing in fully swept position w i ~  straight leading 
edge (before trwncation) 

M free-stream Mach number 

m index in trigonometric ser ies  for section lift coefficient d i s t r i b u ~ o n  
(odd integers only for wings with lateral symmetry) 

index in Fourier ser ies  for P* ( d d  integers only for wings with 
lateral s p m e t r y )  

p a . r ~ a l  wing spanwise load distribution function (see eq. (2)) 

index of summation 

wing- area 

partial wing a rea  

index of summation of Em,, functions (see eq. (14)) 

free-stream velocity (parallel to X-axis) 

domwash velocity (parallel to Z-ads)  

streamwise, spanwise, and vertical orthogonal Cartesian coordinates with 
origin a t  the wing leading-edge apex 



streamwise distance from leading-edge apex to intersection with X-axis 

of line projected from outboard leadbg edge of variable-sweep wing panel 

streamwise diskance from leading-edge apex to intersection with X-axis of 
line projected from wing tip chord 

q e  streamwise location of leading edge of local chord 

aXo local streamwise distance from wing leading edge to field point 

91 span of variable-sweep wing in fully swept position (before truncation) 

9 1 spanwise point at which Mach line (xo = Constan't) through field point 
intersects the wing leading edge 

92  spanwise point a t  which Mach line (xo = Constant) through field psmt 
intersects the wing trailing edge 

y3 spanwise point a t  which the Mach line (xo = Constant) through field point 
intersects the inward slanted wing tip 

2 

azo camber ordinate measured with respect to leading edge of local ~;tb"eamhjklise 
chord Az0 = z0 - zle) ( 

A difference 

6 angle between wing outboard leading and trailing edges (d = fll - A;! 
/ 

E wing twist angle 

A sweep angle 

h taper ratio for straight-tapered wings 

a angle of wing tip chord with respect to Mach line = a' + A1 - nl) 



Subscripts : 

A,B lc~wer and upper limits. x~ corresponds to wing leading edge and z r ~  

corresponds to wing trailing edge o r  line xg in general. yA and y g  
correspond to left and right wing tips or  to -y l  . and yl ,  respectively. 
BA and Bg a r e  similarly defined 

k wing leading-edge kink for variable-sweep wings 

l e leading edge 

P wing pivot 

r wing root 

te trailing edge 

t wing tip 

0 fielid point 

1 wiing leading edge 

2 wing trailing edge 

3 wing tip 

Superior o r  overhead bar (-) indicates dimensional length. U2nbarred lengths a r e  
nondimensionalized with respect to the wing semispan, Asterisk (*) superscript indicates 
partial wing parameter. Prime (7 superscript bdicates wing geometric cha r ac t e r i s~cs  
when leading edge is straight for variable-sweep wing. 

BASIC EQUATIONS 

in linearized wing theory, the equation relating the downwash or normal induced 
velocity at a field point to the partial loading ahead of the field point for a slender lifting 
wing at M = :L is given by equation (62) of reference 2. This equation may be written as 



m d  the limits of integration a r e  esbblished by the boundaries of the region S* as shown 
in figure It. Satisfaction of the Kutb  condition a t  the wing trailing edge is arjsured by 

imposing the condition that the load distribution is zero behind the trailing edge, The 

velocity ratio in equation (I) is equal to twice the normal induced velocity ratio in the 

near wake for  incompressible flow (see ref. 5, for example) for a lifting-line wing eon- 
sisting only of the region S*. The factor of two accounts for the difference between near- 
wake and far-wake conditions i f  rollup of the wing trailing vortex sheet is neglected, 

A well-known method of evaluating the improper integral of equation (I) with the use 
of Fourier analysis was s h o m  by Glauert (ref. 5). By following reference 5, the spanwise 
variable 6 is introduced s o  that 

where 6 varies from 0 to n as y varies from -1 to 1 a s  s h o m  in figure 2, 
The partial load function P* is then expanded in a Fourier series  

00 

P * =  1 Bn sin n6 
n= 1 

With the use of equations (3) and (41, the integral of equation (1) becomes 

The order of summation and differentiation has been interchanged in obtainilag equation (51, 
Reference 6 shows that this interchange of order is permissible i f  the function P* i s  

continuous and if i ts  derivative is sectionally continuous in the interval -a 2 8 2 nra, In 
general, this requirement is satisfied for wings with span load distributions which are 
everyvvhere continuous. The conditions on I?* a r e  also sufficient to perm;it the inter- 
change of order of summation and integration. Accordingly, the integral of equation (5) 
may be taken inside the summation sign and evaluated as shown in reference 5 to obtain 

00 
nBn sin no0 

V 4 sin 80 (6) 
n=l  



In this step the lower and upper limits of integration for 8 have been taken as O and a, 
i-espeeti~iiely. The extension of the limits for 5 beyond those defined by S*  is possible 
i f  the function P* is defined a s  being zero outside the r e ~ o n  S*. 

The slope of the mean line camber is equal to the domwash velocity ratio 

Hence the slope of the mean line camber may be obbined &rectly from equatim (6). Inte- 
gration of equation (6) with respect to x gives the mean line camber ordinate 

z = -  1 nCnsinnOO 
4 sin 80 

n=l 

where 

and again the order of summation md integration has been iinterchanged, By h H n g  the 
integral limits on x from 0 to the field point xg, the camber ordinates a r e  obbined 
with respect to the leading-edge apex. An indeterminate form is encomtered in equa- 
tions (6) and (77) for field points a t  the wing tip where O0 = n. The limiting form is seen 
to be 

sin ne 1i.m - = n(-1) n-t l 
-.- n- s m  e 

Thus, for QC) = n-, equations (6) and ('7) may be rewritten as 

The series summations of equations (9) and (10) a r e  generally not convergent s o  that 
"0 
------dm and z - " 0  V a s  00 + 1~' Equations (6) and (7) have not been restricted a s  to wing 
planfor~m or load dis t r ibu~on with the exception that the partial load function I?* must be 
coratinuons and have a sectionally continuous first derivative. In the following malysis, 
the applications a r e  restricted to wings with lateral symmetry and with a uniform 



chordwise load distribution. This c h o r h i s e  load distribution caus es infinite camber 
slopes to appear a t  the leading and trailing edges but the camber ordinates a.re finite 
except a t  the discontinuities represented by the wing root, wing i5p, and wing leading-edge 
sweep discontinuity in the case of a variable-sweep wing. 

For a uniform chordwise load distribution, the Bn Fourier coefficients sf equa- 

tion (4) a r e  evaluated in a~ppendix A for a wing planform and a field-point location similar 
to that s h o m  in figure 2. For the same cond i~ons ,  an evaluation of the C, coefficients 
of eqiuation (8) is shown in appendix B. The results of an analytical summation of the 

ser ies  of equation (7) a r e  presented in a p p e n b  C and an example of the procedure used 
in obbining the summation terms is shown in appendix D. Some methods of obtainjng 

the Am coefficients wMch a r e  needed to define the s p a w i s e  section lift coefficient dis- 

tribution 

= 1 A, sin rn0 
rn 

a r e  discussed in appendix E. 

The application of the method of calculating camber is shown for wingrs with less 
restricted planform geometry and field-point location than a r e  considered in appendixes A 
and Be However, the limitation of miform chordwise load distribution is retained. 

APPLICATH&BN TO WNGS OF SPECIFIED P U N F O R M  

The eqiuations developed in the preceding section and in appendixes A, B, and C are 
extended and applied to a wing planform with discontinuous slope (sweep angle) of "she 
Beading edge. This plmform configuration is encountered in mriable-sweep wings of the 

type shown in figure 3. The Beading edges a r e  idealized a s  straight continuous line seg- 
ments. The trailing edges a r e  taken a s  continuous straight lines with conatinriioars sweep 
angles. Wings with swept fomard  leading o r  trailing edges o r  with wing tips that are 
leading edges a r e  not considered. The leading-edge sweep of the outboard portion of the 

wing is Kmited to angles equal to o r  less  than the leading-edge sweep of the fixed inboard 
part  of the wing, The latter conditions may be expressed a s  



Although other planform configurations a r e  possible in variable-sweep wings, the config- 
urations inelladed under these conditions a r e  considered the ones most likely to be encoun- 
tered in practice, 

Wing Geometry 

The equations in the preceding section and in appendixes A, S, and @ have been 
developed for  a wing of unit semispan. However, for variable-sweep wings the geometry, 
including the semispan, changes with sweep angle. It will be convenient in the camber cal- 
culations to consider certain geometrical parameters describing the variable-sweep plan- 
forms to be dimensional in character. The wing geometry will then be nondimensionalized 
in terms of the semispan for each wing-sweep angle. The dimensional parameters will be 
indicated by a1 superior o r  overhead bar. Plain o r  unbarred parameters will be nondimen- - - - 
sional. The Sollowing fixed constants will be considered given: hi, 6, a', xp, yp, dg, - 
ct, "nd E;. In addition, the variable-sweep angle Al of the leading edge of the outboard 
part of the wing will also be given. 

'The quatntities which a r e  needed to introduce the effects of variable-wing geometry 
into the wing camber calculations can be computed from the input constants and Rl.  The 
physical s ip i f i cmce  of most of the following geometrical quantities can be inferred from 
the sketch of figure 3. The first step is to obtain the angles and slopes of the various 
edges of the wing under variable-sweep conditions: 

kl = tan Al 

k; = tan A; 

kZ = tan A2 

kk = tan A; 



The next step is to obtain the length parameters which a r e  needed to establislh the nesndi- 
mensional geometry and the criteria for determining field-point regions under variable- 
sweep conditions : 

r -  
- klyp cos A; 

- 
- - 

cos a + yp tan o 

- ? 

d~ = (zr + kkyp - zp) cos A; 

- - d2 
c, = xp + - - k2yp 

cos A2 

- - -1 

The computed quantities A;, k k ,  k;, d l ,  d,, b/2 do not change with the 

variable-sweep angle. The remainder of the quantities a r e  functions of =the sweep angle. 
- - - 

The quantities Ea, &, cr, yk, and Xk a r e  divided by the semispan b/2 to obtain 
the nondimensionalized values of these quantities. The dimensional semispan 5 /2  

divided by itself becomes the nondimensional semispan yt = 1.0. 

The method of calculation is, of course, applicable to other than variable-sweep wing 
planforms. For instance, fixed straight-tapered sweptback wings can be represented by 

specifying a pivot axis which coincides with the wing leading-edge apex. Fixed wings with 



discontinuous leading-edge sweep can be represented by specifying a pivot axis which coin- 
cides with the wing leading-edge sweep discontinuity. h the latter ease, E; may not be 
h s w n  and can be determined by the following relation: 

The wing geometry relations presented in this section a r e  sufficient for a complete 
description of a mriable-sweep wing a s  required for a calculation of the camber, 

Field-Poht Locations 

lar: specifying field-point locations, i t  is convenient to use streamwise coordinates 
which are measured from the leading edge of the local chord and a r e  expressed in frac-  
tions of that chord 

Here xl, is the streamwise location of the leading edge of the local chord, mmsured 
from ane wing leading-edge apex. For variable-sweep wings of the type described in the 
preceding sections, the field-point coordinates may be calculated with the aid of equa- 
tion (13) as follows: 

71 Par 0 C yo 5 yk and 0' 2 o 5 2' 

2 - k;) Yo] + k;yo 

Fclr gk < yo S yt - ct cos 0 and 0' 2 0 9 71 

lZ9 

For yt - ct cos o < yo 5 yt and 0' 5 0 5 ' 
2' 



The foregoing relations a r e  not necessary for a satisfactory speci f ica~on ol field 

points. Any suitable method of specification may, of course, be used. One other rnetJtnj%ncd 
which was found useful was to specify field-point-coordinate locations on the wrng tn the 

fully sweptbaek position ( w i a  the leading edge straight). At the forward sweep positions 
the field points were considered to have moved with the wing. A descripkion~ of solme cam- 
ber results obbined in this way is presented in a subsequent section. 

Calcula~on of Mean Line Camber Ordinates 

In addition to the field-point coordinates ( x ~ , ~ ~ )  and the kink coordinates Ixk,yk), 
the following qumtiees a r e  used in the calculation: 

(x, + klyt < xo and o < 2 2 

From these values of y, the values of 8 a r e  obtained from e q w ~ o n  (31, ira general, as 

a. s o  that, for example, 6J0 = cos- (-yo) and % = c ~ s - l ( - y ~ ) ~  etc. 

By rewriting e q u a ~ o n  (7) with the use of equations like equation (B5) for C, and 
s u b s ~ t u t h g  the summation equations (el) to (C4), the expression for the mean line cam- 
ber  ordinate becomes 

550 = 
n sin O0 

m s 

The summation on m is made over all values of m for which the A, ~:oeffieients are 
hown.  The L,,, f u n e ~ o n s  a r e  as follows: 



- - kg sin283)Dm(n) - kf - kg(l + eos 83 11 7) 

The particular Lmjs functions to be used and the values of 8 to be inserted in these 
functions are specified for the various ranges of the field-point locations. 

(1) For field points forward of the wing leading-edge kink and the trailing-edge 
root / ' O < X ~ S X ~ S C ~  i o r  ~ < x g ~ c ~ ~ x + . ) :  



where k; is used in Lm91 in place of kp 

(2) For field points forward of the wing leading-edge kink but behind tlhe wing 
trailing-edge root (Cr < xO 2 xk): 

with 

and again k; is used in Lm91 in place of k1. 

(3) For field points behind the wing leading-edge Mnk but forward of the traiiing-edge 
root and of the outboard leading-edge tip (xk < x o  2 c ,  5 %  i klyt or 
xk < xO 2 % + klyt  S 



$ = eos - (-~li) 

[4) For field points behind the wing trailing-edge root and of the wing leading-edge 
k,sk Yolk hrward  of the wing Beading-edge tip 2 er < x(g 2 xa i- klyt or  

249 2 % i- kly 

:5) Fzlr field pdn t s  behind the wing leading-edge tip and the trailing-edge root, with 
, ,'- L, = -- $ I r :reamwise wing tips (c, 2 x, + B1yt < xo 2 Cr + kZyt or , i , i  
xa 7- l i l y ,  5 c, < "0 s "r i- k2y : '9 

8]< = cos -l(-yl;) 



(6) Same as (5) except 

ff 2 x c  -I- klyt < xo 2 

with 

82 = cos -8 cr - X~ 

k2 

The ea~mber equations given in this section complete the presentation of the mechsc 

sT calculating camber for variable-sweep wings using the sonic slender wing theory. The 

wing geometry has been speeiffied, fielid-point locations have been determined, and kI?e c a y -  
ber relations for various re@ons of the wing have been shted, The way in ~v?-ich I L ~ X  

method can be applied to wings of simpler planform has also been indicated, Tae next 

section vqiE1 present camber results which have been obbined for some specific p~an:orrna, 

Calculated Camber Results 

Camber ordinates have been calculated for the variable-sweep planform rashown rn 
figures 3 and 4. At the design sweep angle of 75" 58', the leading edge is siiraighl- and 
the wing has an aspect ratio of 1,64, At the most forward sweep of 315" 58" :)he xrimg tips 
are streamwise. Camber results for these two wing sweeps a d  for a third inter,nrdrale 
sweep angle of 4%" 58' are presented in figure 5. 

The wing loading imposed for all sweep positions was elliptical spanwi.ee ex-ept in? 
the vicinity of the wing tips which were intentionally unloaded. Consequently, the cr61.- 
nates presented for each wing-sweep position represeaba: the camber required to achiireve 
nearly elliptical span load distribution at that wing sweep. As emlained in rr precedkng 

section, the variable-sweep -wing planform has been idealized in the region of tlce prvo'a by 

extending the inboard and outboard leading edges to a common intersection at the B ~ n k  

point and by extending a straight trailing edge into the center line for all wir~g-sweep 
positions. 

The camber ordinates are calculated with respect to an orthogonal Cartesian coordi- 
nate system with its origin a.t the leading-edge root of the fixed inboard part sf the v~ing.  

These ordinates are therefore absolute in that no shear or dihedral variation has been 
applied to them, The field points (points at which the camber has been calcuiated) were 



located along consk~nt x lines for the wing in the fully swept (75' 58?) position. For the 
other two sweep positions, the field points were maintained in the same relative positions 
with respect to the local planform geometry s o  that those points which were located on the 
outer wing panel moved with the panel a s  the sweep was varied. (See fig. 4). The cam- 
ber  osdnnates in figure 5 have been plotted a s  a function of the original field-point positions 
on the variable-sweep wing in the fully swept position. By this me&od the calculated cam- 
ber lines for rthe wing can be traced through the various sweep positions. Of course, only 
a deformable wing could satisfy the conflicting camber requirements for the various sweep 
positions. However, by a suitable choice of pivot axis orientation and initial wing shear  o r  
dihedral varia~tion in the fully swept design condition, the conflicts may be minimized and 
a satisfactory compromise may be possible. This aspect of the problem has not been 
treated herein. For comparison pumoses, supersonic (M = 3) camber lines a r e  also 
shown in figure 5 for the 75' 58bweep angle. The supersonic camber was calculated by 
using references 7' to 9. 

Mean line camber ordinates were also calculated for a conven~onal  sweptback wing 
with straight %taper and streamwise tips. The wing had an aspect ratio of 8, a taper ratio 
of 0,3, and a quarter-chord-line sweepback angle of 40'. As mentioned prevliously, wings 
of this type cam be represented in the equations of the preceding sections by specifying a 
pivot axis which coincides with the wing leading-edge apex. Camber ordinates a r e  shown 
i~ figure 6 for sparmwise locations a t  0.1, 0.3, 0.5, and 0.8 of the semispan and a r e  eom- 
aared with ordinates (presented in ref. 10) which were calculated by a different method, 
In figure 6, the eamber ordinates have been adjusted to give a zero camber ordinate along 
ihe leading edge, The wing section of the model of reference 10 was formed by d ishr ibu~ng 
slandard symmetrical airfoil thickness profiles (NACA 65A-series sections) from refer- 
egee 11 about the calculated mean line camber ordinates. 

A limited appraisal of the value of slender wing theory for design pusposes may be 
obtained from the aerodynamic data of reference 10. The data indicate that some modifi- 
cations to the basic wing design were necessary to improve aerodynamic performance in 
The high subsonic speed range. The primary modification was an extension of the inboard 
leading edge, This extension increased the sweep angle and reduced the thickness ratio 
and leading-edge camber in that region. The local supersonic flow on the inboard portion 
o l  the wing was relieved and the formation of strong shocks which were encomtered in that 
region was delayed by the modification. Further modifications to wings of this type were 
reported in reference 12 and confirmed the results shown in reference 10. 

The wing planform of reference 12 resembled the planform of variable-sweep wings 
in an intermecjiate-sweep position, but i t  was a fixed-geometry wing configuration. As 
previously mentioned, wings of this type can be represented in the equations of the 



preceding section by specifying that the pivot axis coincides with the wing leztding-edge 
-7 

kink position and by employing equation (12) to relate c, to Fr. 

The slender wing (linear) theory for Mach 1 is not considered to be adequate for 

the calcdation of the actual detailed shape of the airfoil section camber for supercritical 
wings designed for near-sonic speeds. These wings tend to be heavily loaded and have ta 

large region of supercritical flow. Consequently a more elaborate nonlinear transonic 
analysis in which a separation of camber and thickness effects is not possible car a trial- 
and-error experimental development is considered to be necessary. Despite this Bimita- 
tion, an application of the linear theory for the prediction of wing twist distrjbution tor 
wings of this type has been examined. 

The results of a twist calculation for a supercritical wing planform desigreed for 
near-sonic speeds is presented in figure 7 where the twist angle E was ealieula,ted from 

The experimental data shown in this figure a r e  based on unpublished results obtained at 
the NASA Langley Research Center by Charles D. Harris,  Charles H. Fox, Jr., Robert T. 
Taylor, Dennis W. Bartlett, and Richard J. Re. An elliptical spanwise load d is t r ib~t ion  
was assumed for  the calculation and was approximately the same a s  the mea.sured span- 

wise load distribution. The eqer imenta l  twist distribution was obtained from strucirurai 
wing twist data and was corrected for aeroelastic effects. An adjustment for weng inci- 
dence and the effect of angle of attack was also made. 

A conrnparison of the twist distribution predicted by the linear theory with that 
obtained experimentally shows that the linear theory predicts the general rnagxitude and 

trend of the spanwise variation of the twist angle. However, for a unit lift e~oeffieient 
(CL = 1.0), the ewerimentally determined twist distribution exceeds the calculated results 
by about 2' to 4O (excluding the immediate region of the kink). An experimentally deter- 

mined adjustment of the wing incidence angle may therefore be necessary in applying the 

theory. It  should be noted that the eqer imenta l  results include the effect of a fuselage 
extending approximately over the inboard 10 percent of the wing; however, fa~selage effects 
were not included in the linear theory prediction. 

CONCLUDING REMARKS 

A calculation procedure based on slender wing theory a t  Mach 1 has been derived for 
the determination of the mean line camber ordinates for polygonal planforrn wings with 
lateral symmetry. A uniform chordwise load and a continuous but otherwisce arbitrary 



spax?-wse load distribution was assumed, The range of applicability of the resul ts  is gen- 
erally restricted to low lift coefficients a d  high subsonic speeds for slender wings lor  
which ?a slenderness parameter  @A is small,  

i , h o u g t  the slender wing theory for  Mach B is considered to be inadequate for tne 
;hT:~la\;,,an ot the detailed shape of airfoil section camber for supercrit ical wings des ig~ed 

i$n. icezr.-~r)n:c speeds5 a comparison with ewerimental  resul ts  shows that i t  predicts the 
g w e r a i  j.lsgnitude and trend of the spanwise variation of the twist angle. An ewperimen- 
tally d e t a - m i ~ e d  adjustment of the wing incidence angle may, however, he necessary in 
apoiy:rag iaae slender wing theory to supercrit ical wings* 

Lacgbey Research Center, 
E'atiok~aE Aermautics  and Space Administrabon, 

Bampton, Va,, June 28, 19531. 



EVALUATION OF THE Bn FOURIER @OE FFICIENTS 

The B, Fourier coefficients for a wing of arbi trary plmform with a spcax7~~!se lox! 
distribution which is everywhere continuous a r e  given by 

P* sin n8 d8 

where IF"" has been assumed to be an odd function of 8. I[f the wing has la:ela, symn-e- 

try: that is, symmetry about the x,z plane a t  y = 0, then only odd harmonics sx/:id. cccar 

in the B, coefficients. Consequently, equation (Al)  may be changed to an i n t e g ~ a l  over 
the right half of the wing 

T 
For this case P* is not only an odd function of 8 but is also symmetrical abow B = -"-.. 2 
The further restriction of uniform chordwise load distribution is now introduced s o  Yhat 

Consequently, equation (2) may be rewritten a s  

The spanwise distribution of c i  may be expressed in the trigonometric series of 
equaeon (11) 

ci  = 1 A, sin rnB 

The ser ies  for eg can be a finite trigonometric ser ies  o r  i t  can be a Fourier series. El 
the latter case, generally just the f irs t  few terms a r e  needed for ck distributions whic t  

a r e  s m o o ~ .  The use of equation (A41 in equation (A3) yields 

P* = (xg - xA) 2 A, sin rn8 
rn 



APPENDIX A - Continued 

Equation (A2) for the Bn Fourier coefficients then becomes 

(xg - XA) 2 Am sin m 8 sin n 8 d 0 
m 

By interehangil~g the order of integration and summation, equation (A61 may be rewritten 
as 

B n = $ C  A, (xg - xA)sin m8  sin n B  dB 
m 

The type of polygonal wing planform initially to be considered is shown in figure 2. 
It is a tapered sweptback wing with straight leading and trailing edges and with stream- 
wise tips. In this case the geometric variables for  complete planform definition may be 

eiqressed in three parameters: aspect ratio A, taper ratio A ,  and sweep angle A. An 
extension to more general planform shapes such a s  those encountered on a variable-sweep 
wing is given in the main text. 

For illustrative purposes, a field point will be considered where a Mach line through 
the field point intercepts both the leading and trailing edges. In this ease, the field point 
is behind :he irailing-edge root @ = c 3  but forward of the leading-edge tip (x = klyt) 
where cr Z xo 2 k l ,  a s  shown in figure 2. The lower limit x~ in equation (A3) is given 
by the wing lealding edge a s  k ly  o r  -k l  cos 8. The points where the Mach line x = xo 
through the field point intercepts the wing edges a r e  designated a s  y l  = -cos for  the 
leading edge and y2 = -cos 82 for the trailing edge. Consequently, for span sht ions  
inboard of 82, the upper limit xg is cr - k2 cos 8, and for span stations between Bp 

and 82 the up~per limit is xo. After substitution of the appropriate limits, equation (AT) 
for the Fourier coefficients becomes 

O2 kl - k2)cos $ s i n  m 8  sin n8  + c, sin mB sin no dB 1 

(Is1 cos B sin m 8  sin n 8 +  xg sin m 8  sin n8)d8 

Upon integration and substitution of the relation 

xo := -kd cos 81 = c, - k2 cos 82 

which is valid in the region cr 2 xo 5 kl, equation (A8) becomes 



APPENDIX A - Concluded 

where 

Simple indeterminate forms which a r e  encountered in  equations (All) and (A.12) 1 ~ ~ a . y  be 

evaluated as follows : 

sin p 6' 
l im ----- = 6 

p - 0  P 

It should be  restated here  that the Bn Fourier coefficients obtained from eqca- 
tion (APO) a r e  limited in application because of the assumptions inherent in the derivatio~.. . 
Eeguation (Al0) is restr ic ted to straight-edged sweptback wings with lateral symmetry and 

uniform chordwise load and is specifically formulated for field points in the region 
cr 5 xg 2 k ~ .  These limitations a r e  carr ied over to the evaluation of the C", 
coefficients in appendix B. 



APPENDIX B 

EVALUATION OF THE en COIEFmCIENTS 

The C,, coefficients a r e  evaluated from equation (8) by using equations (A91 

and (ALO) and therefore a r e  subject to the same  restrictions as were the IB, Fourier 
coefficients eisaluated in appendix A. That is, they a r e  for a polygonal planform (straight- 
edged) wing with lateral symmetry and for a uniform chordwise load. The field point is 
also iocated in the region c, 2 xg d kl .  The extension to wings with less  restr ic ted plan- 
form and fielal-pobt location is given in the text. 

With the substitution of equation (A10) into equation (a ) ,  the expression for the Cn 
coefficients becomes 

From ecquation (A91 i t  can be seen that 

dxo = kl sin 81 do1 d 0 d 01) ( 8 2 )  

dxO = k2 sin 02 dB2 033 1 

Substituting e<luations (B2) and (B3) into the f i r s t  and second integrals, respectively, of 

equation (Bd) gives the expression for C, 

os  01 F(81) - G(O1) ] - [ cos 01 F 6) - - G(: 

1ntegra.tion of equation (B4) yields 



APPENDIX B - Continued 

where 

The simple indeterminate forms which a r e  encountered in equatim (B6j may be 

evaluated by using the form of equatlion (A13) as follows: 



APPENDIX B - Concluded 

O H ~ Q  again i t  should be stated that the limitations inherent in the B, Fourier coef- 
ficients represented by equation (A10) also apply to the Cn coefficients represented by 

equation (B5), The derivation of these equations, however, is indicative of the methods 
used ror extension to less  restricted planform and field-point locations. The limibtion 
to uniform c h o r d ~ s e  load, however, is retained throughout the analysis. 



APPENDIX C 

ANALWPCAL SUMNIATION OF SERIES 

The ser ies  summations over n of e q u a ~ o n s  ( 6 )  and (7) with the use of equa- 
tions (A10) and (B5), respectively, a r e  not rapidly convergent and generally require a 
large number of terms to be summed before a sagsfactory numerical result is achieved, 

With equation (B5) for the 6, coefficients substituted into equation (7) and witla the order 
of the s u m m a ~ o n s  over n and m interchanged, the summation over n ]may be 

obhined independently of the summation over m. An example of the methods used to 
obtain one of the summation terms is presented in appendix D. Similar methods are 
applicable to the other summation terms. The results of the summation a r e  summarized 

1 n sin nsOEos 0 F(e) - G ( ~ J  = ~ ~ ( 6 ' )  

f 2 n sin noo F$ = -ZDm(n) 
n=b 

1 n sin no0 ~(3 = -D,(.) 
n=B 

where 

I 
+ B sin n F 0  

m + 1 
r=l i 

m+l - i 

( + f 
sin(2r - l ) O o  s ~ n ( z r  - 

+ m cos meo cos $ - sin meo sin so) 2,r - 1 
r=l 

m - 1 .  
cos(2r - 1) go sin(2r - 1) - -sm m e  sin 80 - (m sin me0 cos so + cos m $ sin 80) 

2m 2r - 1 
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1 m?. - 2Dm(" )= -- sin rn9 4 

2 ,  
(cos20 + cos $ cos me0 - 2 cos 80 s in 00 s in m0 

sin 2rO0 s in  2; - 4 cos 6 m eos moo cos 80 - sin mOO s in  8 
2 r ( 0) 

- - E - cos(eO - 87 + f + log sin(2r - 1) 80 sin(2r - 1)0 
1 - eos(80 + 8) 2 r  - 1 

r=l 

I' +-- 'm sin m0g + 2 s in  80 cos 80 eos m 8  8F 

eos 2rB0 s in  
s in m80 eos 80 + cos rn8g s in 90 

2 r 1 

- 1)8 s in O0 
+ - - 

r n -  1 
u c o s  8 s in  m$ s in  80 

2 n-J 

sin(m + 1)8 s in 80 
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m+l 
cos 00 cos rn0g - sin 80 sin rn8 

0) 
r =I 

- I )  00 sin 00 sin(m + 1) 80 sin 3 
-k 

m - I  m t - I  

m(2 + cos 280) (m - cos 80 sin moo sin BO + sin(m + 1)80 sin 60 
2m 4(m + 1) 

and the indeterminate form in equations (67) and (68) may be evaluated a s  follows: 

sin(m - 1)60 sin 6'0 
iim 1 = 80 sin 80 

m - 1  m - 1  

D, ( 0) Em j 0) 
To ass is t  in numerical calculations, the functions and - a re 

m sin m 6'0 nn sin rn 80 
presented in ggrphical form in figures 8 and 9 for odd values of m up to rn = 39, A 

curve for rn approaching has been added to show the limit toward whicn these fune- 
tions tend a s  m grows very large. Figures 8 and 9 have been prepared forbfixed values 
of yo corresponding to values of 6'0 a t  7.5O increments from 90° to l72,5", The 

curves a t  80 = 12O0 for the odd values of m which a r e  multiples of 3 have been deleted 
from figures 8(e) and 9(e). They a r e  presented separately in figure 10 for Dm(6) and in 
figure I1 for  Em(@. These extra figures a r e  necessary because sin rn60 equa%s ze::o 
in the denominator of the functions presented in figures 8 and 9 a t  80 = 120" for these 
values of m. 



DERIVATION OF ANALYTICAL SUMMATION OF SERIES 

The derivation of the closed-form result (eq. (C5)) of the summation expressed in 
equation (el) is shown in detail. Equation (C1) is rewritten 

n sin neOEos 8 F(8) - G ( B ~  
i 

The substitutim of the expression for F(8) from equation (All) and for G(8) from 
equation (AII2Q into equation (Dl) yields 

00 
7 

in(n - m) 8 sin(n + m)8 D,(H) = 1 n sin neg - 
n - m  n + m 

n=l 
I 

+ sin(n - m - 1)8 - sin(n + m + l ) 8  - 
n - m - 1  n + m + l  

Equatiori (D2) may be simplified to 

As previously mentioned, i f  the wing has lateral symmetry, then only odd values of n 
occur. Consequently, with the substitution of n = 2r - 1 where r takes on consecutive 

integer values, equation (D3) may be rewritten a s  
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After rearranging and combining terms, equation (D4) becomes 

m+l 
00 

8) - 1 eos 2r(8g + 8) 
-2- 

m - EOS 2r(oo - a) 
2r 2 r 

r=l r=l 

m i l  
7 

sin 2r(Q0 + 8) +sinmOO-C 2r - 2 sin 2;: - Q) 

sin(m i l)(Q0 + 0) + sin(m + l ) (Qo - 
m i l  m i l  

cos(" - I ) Q ~  sin(2r - - (m sin m Qo cos Q~J + eos m 80 sin 80 
2r - l 

r=l 

) - (m cos m9o cos $ - sin meo sin Qo 

The following summation is presented in reference 13: 

+ f cos(;-- ?(Qo - 0) 

r=l 

From equation (D6), the following summation may be obtained: 

= - log 
4 

r =I 



APPENDIX D - Continued 

E q ~ a t i o n  (D7) may be rewritten as 

cO 

The series of equation (D6) may be written as the sum of two se r i e s  

The snbstitutica of equations (D6) and (D8) into equation (D9) yields 

00 

sin 8 2 

r=l 

The cosine se r i e s  of equations (D8) and (D10) and the f u n c ~ o n s  they represent a r e  
even functions of 6 and a r e  periodic in intervals of 27r. Consequently, the intervals of 
convergence of equations (D8) and (D10) may be written 

Itt is therefore seen that, in these two equations, the s e r i e s  converges to the function 
everyiiihere except a t  8 = 0 and a t  8 = icpn where p is any integer. 

With the use of equations (D8) and (D10), the infinite s e r i e s  in equation (D5) may be 
writtec &as 

f -- s 3 - 8) - 2 cos 2r(o0 + 0) 
2 r  = T log 2 s (Dl11 

r=$ r=l 

(X? 00 

c o s e r  - 1)(80 - 0) - 1 cos(2r - 1)(00 + 0) 1 - 8) 1 - cos(00 + 
= - log 

2 r  - 1 + 6) 1 - cos(80 - 
r= 1 r=l 

In equations (DII)  and (D12), the range of the angle arguments a r e  in general, 
71 

2 
(30 - 8) S - and 7r 5 (80 + 8) 2 2n. Therefore, equations (DI1) 

(D5) is valid everywhere except a t  8 = OO. 



APPENDIX D - Concluded 

Subst i tu~on of equalions (D11) and (D12) into equation ( ~ 5 )  yields, after 
simplification, 

m i l  

M sin z re  sin(m - 2 r ) ~  + 2 sin eO s i n b  -- + I! Q 
i 

DM(@) = -;Z- cos e + a sm meo) 
2r m i l  

r=l I i 

[ 
sin(Bo + 0) I - cos(eO - e) 

+ m c0.s meo cos 80 - s inmoo sin eO) - lop sm(OO - 8) 1 - cos(eO + e r J] 
m+l - 

sin(.. - l leo  sin(.. - 9 + --  I sin m e  sin e0 
2r - 1 

r=l 

Equation (D13) is the same a s  equation (C5). The other summation expsessrons w n ~ e h  are 
represented by equations (C7) and (C8) may be obtained in a s imilar  manner, 



APPENDIX E 

CALCULATION OF THE Am COEFFICIENTS 

The desired wing spanwise load distribution is considered to be known s o  that, for a 
given planforrn~, the spmwise  distribution of section lift coefficient el is also known. If 

an analytical expression for the cl  distribution is known, then the Am coefficients of 
equation (11) can be found by a Fourier expansion. However, if the c l  distribution is 
known only numerically, then the A, coefficients may be  approximated by simple 
numerical methods for a l l  but the most i r regular ly shaped c~ distributions. Two such 
methods are the $7-point odd harmonic numerical method for  the s ine t e rms  presented in 
reference 14, and the method in reference 11. 

The A,, coefficients for elliptical spanwise load (eel) distribution on straight- 
tapered wings with streamwise tips may be obtained as follows: 

"1 s in  m 6  d6  = c l  s in  m 6  d6  

where, for elliptical spanwise load 

2 
eel = 5 c r ( l  + X)CL sin 6 

1T In the range of 8 from 0 to - the chord distribution may be expressed as 
2 

c = c r [ l  - (1 - h)cos 91 033) 

Subs ti tutang equations (E2) and (E3) into equation (E 1) yields 

8 A, = -Z(l + l ) C L  ' I2 sin B s i n m 6  
71 0 1 - ( I  - h)cos 8 

The soluLiapn lor  the integral of equation (E4) can be written in the recursion form 

A n , - 4 1 + 1  - - - - -  
CL T I -  A (Km- 1 - ~ m + 1 )  

and the recurring K, functions a r e  evaluated 



APPENDIX E - Concluded 

2 +- 2 Km, 1 + Km+l = - m, s in  - 
2 1 - X  

Table 1 presents values of A , / c ~  for values of X from 0 to 1.0. The values 
of Am/CL f o r  X = O a r e  for a wing with pointed tips and do not represent  a realis- 
tically possible lift coefficient distribution. They a r e  included in the table only to indi- 
cate limiting values of A, /cL as X - 0. In general, the f i r s t  few entries in the 

table (at the lowest values of m)  were obtained with the recursion formula of equa- 

tion (E5). At the higher values of m, the table entr ies  were obtained by numerical 
methods. 

The method of solution for  camber presented in this report  is not well suited f o r  
use where a uniform spanwise section lift coefficient distribution is desired. However, 
approximate resul ts  can be obtained with the A , / c ~  values presented in table 2 which 

were computed by the method of reference 11. The values of 4/nm oblainied by 

Fourier  expansion for a uniform e l  distribution a r e  included in the table for comparison 
purposes. 
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TABLE 2,- A CL FOR UNIFORM el DISTRIBUTION 
m i  





Partial wing spanwise 
load distribution 

Figure 2.-  Sketch showing wing planform geometry and the partial  wing 
spanwise load distribution. 



:Figure 3 . -  Sketch showing geometry of variable-sweep wing. 



Figure 4.- Sketch showing changing location of field points with wing-sweep 

variation for variable-sweep wing mean line camber calculation. 





Figure 6.- Comparison of mean line camber calculated by present method an? by method 

of reference PO for a wing with Ac/4 = 40°, A = 8, and h = 0.3 for CL = 3.5.4. 



Actual wing plonform --- Wing planform assumed 
in  twist calculation 

0 Measured spanwise load 
distribution 

--- Spanwise load distribution assu 

in  twist calculation 

0 Experimental twist distribution 
--- Calculated twist distribution 

.re 7. - Comparison of experimental and calculated twist distribution for 

a supercritical wing designed for near-sonic speeds. 



(a) so = "O; yo = o. 

Figure 8. - =h-n as a hnction of y for odd values of m frow i tc: J2 
rn sin me0 
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3 O F .  

(b) Oo = 97.s0; =6).13053. 

Figure 8. - Continued. 



Fip r  e 8. - Continued. 



(d) go = 112.5'; yo = 0.38268. 

Figure 8. - Continued. 



(el o0 = 120~; yo = 0.50000. 

Figure 8. - Continued. 



Figure 8.- Continued. 



(a) So = 135'; yg = 0.70711. 

Figure 8. - Continued. 



(h) 80 = 1142.5"; = 0.79335, 

Figure 8.- Continued, 



(i) O0 = 150"; yo = 0.86603. 

Figure 8. - Continued, 
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Figure 8. - Continued. 





( k )  O0 = 172.5'; yo = 0.99144. 

Figure 8. - Concliuded. 



(a) 80 = 90"; yo = 0. 

Figcare 9, - Ern as a function of y for odd values of rn from I. t3 59. 
m sin moo 





(c j  Qo -- L05'; yo = 8.25882. 

Figure 9.- Continued. 



( 1  OO = 112.5"; yo =0,38268. 

Figure 9. - Continued. 



(e) O0 = 120'; yo = 0.50000. 

Figure 9. - Continued. 



I .E 

: . \. 

l ,A 

1.2 

1.2 

I . !  

'.C 

. - 

.8 

6 

.5 
d? 
E .4 
C .- 

.3 -$ 
"ii .2 

f Q0 = 127.5"; yo = 0.60876, 

Figure 9. - Continued. 
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(g) o0 = 1.355 yo = 0.70711. 

Figure 9. - Continued. 



(h) O0 = 142.5'; yo = 0.79335. 

Figure 9.- Continued. 



(i) O0 = 150'; yo = 0.86603. 

Figure 9, - Continued. 



( j )  Bo == 15% 50% yo = 0,92388. 

Figure 9. - Continued. 



(k) eo = 66s"; JTQ = 0.96593. 

Figure 9. - Continued. 
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(1) OO = 172,%"; = 0.99144. 

Figure 9;- Concluded. 



Figure 10.- Dm as a function of y for values of m which are odd mrii.tiolcs 

of 3 from 3 to 39 at O0 = 120" and yo = 0.5. 



Figure 11. - Em as a Eunelion of y for values of m which a r e  odd multiples 

of 3 f rom 3 to 39a t  tJ0=1200 and yo =0.5. 
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TECHNI&L NOTES: Informtien ins brad 
in sc-~pe kt neverrkle~s bf irnportanc:~ ns a 
contributi* to exisring h l e d g e .  

TECHNI~AL MEMORANDUMS: 
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data, security c 1 a d f i ~ -  

TECHNICAL "PfPANSLATIONS: Informtion 
p~iblis-hcd in 8 foreip language midwed 
m merit N&X distributim in En$ish. 

SPECIAL PUBLICATIONS: Infamation 
dtsivtd fram 0s of vvalue fa NASA activities. 
Publicatims include confererne p t o c d k a ,  
rnmagmphs* d ~ t a  co~lpilations, had-s* 
r~oti~ebmks, and wid bibliogqhies. 
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